

Intrinsic Breast Cancer Subtypes depending on Participation in Mammography Screening Program

Background

Breast cancer in screening participants has shown favorable tumor characteristics and prognostic parameters compared to symptomdetected breast cancer, even including interval cancers. Our aim was to examine the distribution of the molecular breast cancer subtypes considering the proliferation marker Ki-67 in participants (Ps) and nonparticipants (Non-Ps) of the German Mammography Screening Program (MSP) in a population-based setting.

Methods

This retrospective observational study evaluated population based data from the Epidemiological Cancer **Registry Lower Saxony (EKN) (Data** completeness > 95%). Reference population was all 285.634 women aged 50–69 years living in the catchment area of the two screening units of Northwest Lower Saxony and Hanover who were invited for screening every two years. The MSP was implemented in these regions from 2005 to 2008. The study included 953 cases of invasive breast cancers (ICD-10 C50) diagnosed in the reference population in 2014 (Ps: 565 cases, Non-Ps: 388 cases, MSP participation-rate = 55%).

24 month after a negative screening	Biological characteristics	s Participants (Ps)						Non-		Total		p-value [#]
(Interval cancer). The group of Non- Ps included all other breast cancers.	of breast cancer	Screening cases		Interval carcinomas*		Ps total		participants (Non-Ps)				(cf. Ps to Non-Ps)
Excluding criteria: Interval cancers		(A)		(B)		(A + B)		n	0/	n	0/	
diagnosed later than 24 month after	Invasive carcinomas	434	100,0	131	100,0	565	100,0	388	100,0	953	100,0	
the last unremarkable screening examination because they could not	Age at diagnosis Average age (SD ^{**})	60,3 (5,8)		61,2 (5,3)		60,5 (5,7)		59,2 (6,0)		60,0 (5,9)		0,0009
be assigned to one of the groups (n = 78), dropouts from the MSP (n = 7),	T stage 1 T stage 2+ missing data	315 113 6	73,6 26,4	51 75 5	40,5 59,5	366 188 11	66,1 33,9	159 166 63	48,9 51,1	525 354 74	59,7 40,3	< 0,0001
inadequate data quality (n = 1) and recurrences and metastases (ICD-10	N stage 0 (incl. N1mi) N stage 1+	349 74	82,5 17,5	82 42	66,1 33,9	431 116	78,8 21,2	202 106	65,6 34,4	633 222	74,0 26,0	< 0,0001
C79.81). Synchronous or metachro- nous secondary breast cancer were	M stage 0 M stage 1	386 4	99,0 1,0	, 121 2	98,4 1,6	507 6	98,8 1,2	239 35	87,2 12,8	58 746 41	94,8 5,2	< 0,0001
counted multiple times (n = 18). A modified molecular subtyping of all tumors was performed according to	Grading I Grading II Grading III Grading III	44 64 244 124	14,8 56,5 28,7	8 7 65 54	5,6 51,6 42,9	52 71 309 178	12,7 55,4 31,9	114 40 185 137	11,0 51,1 37,8	166 111 494 315	12,1 53,7 34,2	0,1718
the S3-guideline (categories for Ki-67: ≤ 10% = low, 11-24% = inter-	missing data ER+ PR+ ER+ PR- ER- PR+	2 310 58 1	74,5 13,9 0 2	5 73 14 1	64,0 12,3 0 9	7 383 72 2	72,3 13,6 0 4	26 194 38 0	66,7 13,1 0.0	33 577 110 2	70,3 13,4 0 2	0,0747
mediate, ≥ 25% = high) – see table 1 .	ER- PR- missing data	47 18	11,3	26 17	22,8	73 35	13,8	59 97	20,3	132 132	16,1	
Table 1: Molecular subtypes of breast cancers. Data according to S3 guideline	HER2-positive HER2-negative missing data	49 360 25	12,0 88,0	28 86 17	24,6 75,4	77 446 42	14,7 85,3	59 228 101	20,6 79,4	136 674 143	16,8 83,2	0,0336
(modified)	Ki-67 high (≥ 25%) Ki-67 intermed. (11-24%) Ki-67 low (< 10%)	94 134 179	23,1 32,9 44 0	52 29 31	46,4 25,9 27 7	146 163 210	28,1 31,4 40 5	117 80 84	41,6 28,5 29 9	263 243 294	32,9 30,4 36 8	0,0003
Indectal subtypesINININININLuminal AER and/or PR positive $(\geq 1\% \text{ or IRS} > 2)$ Negative $(\leq 10\%)$ Low $(\leq 10\%)$	missing data Molecular subtypes	27		19	27,7	46	-10,0	107	23,5	153	50,0	
Luminal A or B***ER and/or PR positive $(\geq 1\% \text{ or IRS} > 2)$ NegativeIntermediate (11-24%)Luminal B(BHER2-peg)NegativeHigh	Luminal A Luminal A orB ^{***} Luminal B	169 113 76	41,9 28,0 18,9	28 24 32	25,5 21,8 29,1	197 137 108	38,4 26,7 21,1	75 62 86	26,7 22,1 30,6	272 199 194	34,3 25,1 24,4	0,0003
Luminal B(BHER2-pos)ER and/or PR positive $(> 0.000 \text{ cm})$ $(\geq 25\%)$ Luminal B(BHER2-pos)($\geq 1\%$ or IRS > 2)PositiveAny Ki-67	of which: Luminal B _{HER2-neg}	(44) (32)		(14) (18)		(58) (50)	-	(50) (36)	-	(108) (86)	-	
HER2-positive ****NegativeNegativePositiveAny Ki-67Triple-negativeNegativeNegativeNegativeAny Ki-67	HER2-positive triple-negative	17 28	4,2 6,9	9 17	8,2 15,5	26 45	5,1 8,8	22 36	7,8 12,8	48 81	6,0 10,2	
	missing data	31		21		52		107		159		

* Interval carcinomas 0-24 months after screening examination; ** SD = Standard deviation; *** Cannot be * ER = estrogen receptor; ** PR = progesterone receptor; classified as luminal A or luminal B due to intermediate Ki-67; # Cases with missing data were excluded *** cannot be classified as luminal A or luminal B due to intermediate Ki-67; **** HER2-positive = score 3 or score 2 and positive FISH

Britta Mathys¹, Iris Urbschat², Joachim Kieschke², Gerold Hecht¹

¹ Referenzzentrum Mammographie Nord, Oldenburg ² Epidemiologisches Krebsregister Niedersachsen (EKN), Registerstelle, Oldenburg

The group of the Ps contained screen detected cases and breast cancers that were detected in the interval of

Table 2: Biological characteristics of breast cancer dependent on screening participation (ICD-10 C50, Yd 2014, 50-69 year old women, Northwest Lower Saxony and Hanover region.

For categorical variables, we calculated differences using the chi-squared test; for numerical variables, we used a t-test (Excel 2016). We presented the differences by means of the pvalue. However, due to the partially exploratory nature of the study and the large number of tests performed, the p-values should not be seen as having statistical significance.

Results

Considering cases with invasive breast cancer (n = 953) tumours detected in screening Ps are more often diagnosed in early T stage (T1, p < 0,0001), HER2 negativ (p = 0,0336), with lower Ki-67 percentage scores (p < 0,0003) and without loco-regional lymph node involvement (p < 0,0001), compared to tumours in Non-Ps – even including interval cancers (see table 2). Regarding grading both groups showed less differences (p = 0, 1718), because interval cancers are more comparable with cancers in Non-Ps. We found distinct differences in distribution of the molecular subtypes between both groups (p < 0,0003): especially in the category Luminal A (38,4% vs. 26,7%), but also in the categories Luminal A or B (26,7% vs. 22,1%), Luminal B (21,1% vs. 30,6%), HER2 enriched (5,1% vs. 7,8%) and triple-negative (8,8% vs. 12,8%).

Discussion

According to the S3-Guideline an adjuvant chemotherapy can be avoided in the majority of Luminal A subtype breast cancers. Assuming that both groups received a guideline-based therapy MSP participants (including interval cancers) could be treated with less aggressive systemic therapy compared with cancers in non-participants. Strengths and limitations: The strong point of this study is the high level of completeness of the EKN Data and of the characteristics recorded by the EKN. For example, the Ki-67 data is available in 84% of studied cases for the year of diagnosis 2014 (Ps: 92%; Non-Ps: 72%). One possible bias is a healthy screen participation bias, which states that healthier women with a lower risk of mortality are more likely to participate in screening. Otherwise, a high individual risk for breast cancer may also influence the screening status. But if a high-risk woman has screening and curative mammography in alternating years, she will still count as a participant with interval cancer in our study, even though the diagnosis was made in the course of curative care.

References: Mathys B, Urbschat I, Hilbert M, Kieschke J, Hecht G.: Immunhistochemische Tumoreigenschaften bei Mammakarzinomen in Abhängigkeit von der Teilnahme am MSP. Senologie 2022; 19: 140-154

Contact: Referenzzentrum Mammographie Nord, Britta Mathys, <u>mathys@referenzzentrum-nord.de</u>